Meek Males and Fighting Females: Sexually-Dimorphic Antipredator Behavior and Locomotor Performance Is Explained by Morphology in Bark Scorpions (Centruroides vittatus)

نویسندگان

  • Bradley E. Carlson
  • Shannen McGinley
  • Matthew P. Rowe
چکیده

Sexual dimorphism can result from sexual or ecological selective pressures, but the importance of alternative reproductive roles and trait compensation in generating phenotypic differences between the sexes is poorly understood. We evaluated morphological and behavioral sexual dimorphism in striped bark scorpions (Centruroides vittatus). We propose that reproductive roles have driven sexually dimorphic body mass in this species which produces sex differences in locomotor performance. Poor locomotor performance in the females (due to the burden of being gravid) favors compensatory aggression as part of an alternative defensive strategy, while male morphology is coadapted to support a sprinting-based defensive strategy. We tested the effects of sex and morphology on stinging and sprinting performance and characterized overall differences between the sexes in aggressiveness towards simulated threats. Greater body mass was associated with higher sting rates and slower sprinting within sexes, which explained the greater aggression of females (the heavier sex) and, along with longer legs in males, the improved sprint performance in males. These findings suggest females are aggressive to compensate for locomotor costs of reproduction while males possess longer legs to enhance sprinting for predator evasion and mate finding. Sexual dimorphism in the metasoma ("tail") was unrelated to stinging and sprinting performance and may best be explained by sexual selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PUBLISHED BY THE AMERICAN ARACHNOLOGICAL SOCIETY Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae)

Temperature can profoundly affect many physiological processes, including muscle performance. Many ectotherms appear sensitive to this relationship, choosing times and locations of activity permitting high body temperatures and, thus, quick escape from predators. High body temperatures, however, can lead to dehydration, which in turn affects muscle performance. Striped bark scorpions Centruroid...

متن کامل

Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom.

Predators feeding on toxic prey may evolve physiological resistance to the preys' toxins. Grasshopper mice (Onychomys spp.) are voracious predators of scorpions in North American deserts. Two species of grasshopper mice (Onychomys torridus and Onychomys arenicola) are broadly sympatric with two species of potentially lethal bark scorpion (Centruroides exilicauda and Centruroides vittatus) in th...

متن کامل

Species Delimitation and Morphological Divergence in the Scorpion Centruroides vittatus (Say, 1821): Insights from Phylogeography

Scorpion systematics and taxonomy have recently shown a need for revision, partially due to insights from molecular techniques. Scorpion taxonomy has been difficult with morphological characters as disagreement exists among researchers with character choice for adequate species delimitation in taxonomic studies. Within the family Buthidae, species identification and delimitation is particularly...

متن کامل

Hot and not-so-hot females: reproductive state and thermal preferences of female Arizona Bark Scorpions (Centruroides sculpturatus).

For ectotherms, environmental temperatures influence numerous life history characteristics, and the body temperatures (Tb ) selected by individuals can affect offspring fitness and parental survival. Reproductive trade-offs may therefore ensue for gravid females, because temperatures conducive to embryonic development may compromise females' body condition. We tested whether reproduction influe...

متن کامل

Intersexuality and behavior in crayfish: the de-masculinization effects of androgenic gland ablation.

In crustaceans, male differentiation and primary and secondary characteristics are regulated by the androgenic gland (AG). In gonochoristic crustaceans, the AG is also linked to intersexuality. Whereas the co-occurrence of various male and female characteristics has been demonstrated in intersex crustaceans, little is known regarding sexually dimorphic behavior patterns in such individuals. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014